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by
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Abstract

In this report, we study the Gaussian two-user channel which is an exten-

sion of an ordinary Gaussian channel with single input and output to the one

with two inputs and two outputs and where the independent informations are

transmitted between two input/output pairs simultaneously. Two achievable
0

regions called TS and FM are compared. TS is obtained by simply time-

sharing the two superposition modes introduced in the previous paper and P1

corresponds to the frequency division mnultiplexing where only one of the two

signals is transmitted in each of the two sub-bands. A fairly tight outer bound

to the achievable region is obtained by utilizing the capacity region of the

corresponding Gaussian broadcast channel. Properties of two kinds of

frequency division multiplexing F1M2 and FI4 which make use of the superposi-

tion modes are studied and the achievability attained by these two kinds of

multiplexing is discussed using the results of computation.
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I. INTRODUCTION

In a previous paper [1] called 'Tw-User Communication Channels," we

discussed in some detail the achievable region of rate pairs of "two-user

channels." By "two-user channels," we mean the channels with two inputs and

two outputs. We discussed the achievability of rate pairs when separate

messages are sent between two source-user pairs. A "Gaussian two-user channel"

is a typical example of the continuous version of this class of channels

and is an extension of an ordinary Gaussian channel with single input and output

to the oe with two inputs and two outputs. This channel was studied in that

paper to some extent giving us much insight into the general two-user channel

problem. It seems, however, that some problems proper to the Gaussian channel

were left unsolved, e.g., whether some kinds of time or frequency division

multiplexing can further improve the achievable region? or how is the problem

related to that of the Gaussian broadcast channel studied thoroughly by Bergmans

and Cover [2]?

The purpose of this paper is to give some answers to the above questions.

Although we cannot yet obtain the exact' capacity region of this channel, we

succeed in obtaining a tighter outer bound by utilizing the known exact capacity

* region of the corresponding Gaussian broadcast channel. We also improve on

the achievable region obtained in the previous paper by introducing two kinds

of frequency division multiplexing.

* In Section II, the concept of Gaussian two-user channels is explained.

Two kinds of superposition modes and the region of the achievable rate pairs

obtained by time-sharing the above two superposition modes are reviewed.

6 Another achievable region obtained by simple time or frequency division

multiplexing mentioned in the previous paper and an outer bound to the
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achievable region obtained in that paper are also reviewed briefly. In Section

III it is shown that the exact capacity region for the corresponding broadcast

channel problem can be utilized as a tighter outer bound to our problem than

that introduced in the previous paper. In Section IV, two' achievable regions

introduced in the previous paper and reviewed in Section II are compared in

many situations. In Section V we study frequency division of two superposition

modes where a given frequency band is divided into two sub-bands and signals

are transmitted by mode 1 and mode 2 within the respective bands. In Section

VI frequency band is also divided into two but signals are transmitted by the

same mode within both bands. It is shown that these kinds of multiplexing

can somewhat improve the achievable rates and in Section VII their performance

is discussed using the re:ults of numerical calculation.

II. SUPERPOSITION MODES AND

SIPLE FREQNCY DIVISION MULTIPLEXING (FIHI)

Let two radio transmitters independently transmit continuous signals

x, (t) and x2(t) with allotted powers P, and P2 and both with the same available

bandwidth W to two receivers 1 and 2 respectively. As is shown in Fig. 1 the

two sigrals are superposed first and then the sum x(t)=x1 (t)+x 2 (t) is sent to

receiver 1 and 2 in the presence of additive white Gaussian noises Z1(t) and

Z2(t) of one-sided power spectral density N1 and N2 respectively. We assume

N1 <N2 throughout this paper. This channel as a whole is called a Gaussian

two-user channel. We assume also that separate messages are sent between two
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input/output pairs as in the previous paper. Then we ask what set of rates

(Rl,R 2) are simultaneously achievable in this channel.

First let a deterministic signal x2 (t) of power P2 be sent through the

channel, then we can transmit signal x Ct) with maximum rate

(P1
1 W log ( +1)C 1 1

(let us take 2 as a basis of logarithm throughout this paper) because receiver

1 can first subtract the known signal x2 (t) from the received signal yl(t)

4 and then decode xl (t) as in the single input/output channel. Therefore we

can see that the rate pair (C ,0) is achievable. In the same way, we can see

that the rate pair (0,C O) is also achievable, where

2)2C. 0 P lg(+2(2
:.:. C~2  W lgli 2 )  2

In a previous paper, we showed that the rate pairs (C, C2 ) and (C1 2 ,C )

are also achievable, where

C2  - Wlog (1+-y ) (3)
2 P 1 + 2

and

Pi
C12 - Wlog (1+P2 + wN ) 2 (4)

We first explain the achievability of the first rate pair. On the one hand,

receiver 2 can decode code words with rate C2 in (3) with as small an error as

Iq
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possible because x (t) with power P1 is regarded as noise in addition to

n2(t) with power N when we cannot know what x1 (t) is being sent. On the

other hand, receiver 1 can first decode x2 correctly. It is possible because

he can in general decode x2 (t) of power P2 in the presence of signal x1 (t)

of power P1 and a noise of power WN1 when the transmission rate of the second

message R2 does not exceed

P
Wlog (l + P + N

and this is in fact larger than C2 in (3) because of the inequality Ni<N2 .

As a next step, receiver 1 can decode a signal x1 (t) with rate as large as

0 in (1) from the signal x1 (t)+n1 (t) obtained by subtracting the already

0decoded x2(t) from received signal y1 (t). In this way the rate pair (C1 ,C2 )

has been shown achievable. Let us call the above-mentioned mode of communica-

tion as superposition mode 1. Next, the achievability of the second rate

pair (C1 0 is explained in the following fashion. First both receivers
VIAC 12 ,C2)

can decode xl(t) correctly from the respective received signals. This would be

clear to receiver 2 from the functional form of C12 in (4), and is also true

to receiver 1 because of the inequality NI<N2 . Receiver 2 can then decode

0x2 (t) of rate C2 in (2) after subtracting the already decoded x (t) from the

received signal. Thus the rate pair (C12 ,CO) has been shown to be achievable.

Let us call this mode of conmamication as superposition mode 2. It should be

noted here that these two modes are not symmetrical because of the restriction

Nl< N2 . One characteristic feature of mode 2 is that two independent messages

sent from two inputs can both be decoded correctly at each of two outputs.

Let us consider a rectangle in a R1-R2 plane surrounded by straight lines

1 1 2-C2, R0-axis and R2-axis, then the rate pairs (C0,C 2 ) and (C12 ,C0) are
1 2 1
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represented by points A1 and A2 on the sides of the rectangle as shown in

Fig; 2(a). If we connect A1 and A2 by a straight line, then the rate pair

corresponding to the point on this line between A1 and A2 can be easily

shown to be achievable by the so-called "time sharing" argument. Suppose

this two-user channel is used for a sufficiently long period of time T. If

in a part XT of the total period the channel is operated by the superposition

mode 1 and in the remaining (1-X)T of the period it is operated by the mode 2

for a certain X, 0 A A< 1, then we can get a rate pair represented by the

following equation and the corresponding point is on the straight line

4 segment 172:
4

R = + C12

(5)

R2 - 'C2 + °

where

0< < 1, -i-x .

Let us denote this line segment 77- by TS. The part of the rectangular region

on the left-lower side of this TS is an achievable region, and we sometimes

call this achievable region TS. It is shown in Section IV that this time-sharing

rate pair on I is also realized by a frequency division multiplexing.

In the previous paper, we noted that by a simple time division multiplexing

(let us call this TDM1) the following rate pair can be achieved:
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1 (6)

P2/X

Here we again consider a sufficiently long period of time and in a fraction

A of the time only x1 is sent with power P /A and in the remaining time only

x2 is sent with power P2/X. We can show that the same rate pair can be

achieved by frequency division also (let's call this a M11), where the

frequency band is divided into two bands with bandwidths yW and TW (O0y< ,

[A 7-yl-y) and the first band is used only for transmission of xI and the second

only for x2. Accordingly we have

p.

1
(7)

P = Wlog 2

which is easily seen to be equivalent to TIML. The rate pair is (C , 0) for

y1 and (0,C O) for y=0. The curve obtained by varying y between 0 and 1 or

the region in the first quadrant of the R1 -R2 plane surrounded by the curve

is called FIIl. It is easily seen that the curve FDtl is concave as shown in

Fig. 2(a).

In the previous paper, we made mention of these two achievable regions TS

and RFD but did not compare the performance of these two regions further. The

conparison will be performed in Section IV and we shall see that the relation

of the two regions is of great importance for further development of this paper.
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A general outer bound to the achievable region for the two-user channel

was derived in the previous paper, and in this Gaussian tw-user channel the

bound was. shown to be a part of the before-mentioned rectangular region that lies

on the left-lower side of the straight line PI+R=C0, where CO is given by

P1 +P2Co  = Wlog(I+ - ) (8)

00

When o0 or equivalently when PW(N2 -NI) the straight line R +R2=C0 cuteC051 ore(N2 12

the rectangle, but when C >CO+C the straight line is outside of the rectangle.

* In the latter case the rectangle itself is an outer bound to the achievable

region. We denote by J this outer bound or the part of the straight line inside

the rectangle.

In the previous papei we showed that when the noise power NI and N2 are equal

this two-user-chantel becomes equivalent to a multiple access channel and both our

achievable region TS and outer bound J coincide and are equal to the capacity

region and that the FlMI curve becomes tangential to a line A1A2 (or R1 +R2 =C0 ).

TS and J coincide only if N1=N2. The behavior is sketched in Fig. 2(b).

III. A NEW OUTER BOUND

In this section we show that the tighter outer bound than J obtained in

the previous paper can be derived by simply utilizing the known capacity region

of the corresponding Gaussian broadcast channel.
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We first note that the corresponding problem of Gaussian broadcast channel

is quite the same with that of the Gaussian two-user channel except for the con-

dition imposed on powers of two signals. That is, for the broadcast channel,

only the total power P' is allotted and the powers of the respective trans-

mitters P , P2 may be varied freely under the restriction of constant total

power:

P! + Pt = (9)
1 P2

whereas for our two-user channel the powers of each transmitter P1 and P2 are

allotted separately and both are kept constant.

Next, an exact capacity region of the Gaussian broadcast channel [2] and

its boundary curve is given by

1
R, Wlog(+

(10)
p,

R2  - Wlog(l+-2

where P' and P' are varied under restriction (9).

1 2
Now we consider our Gaussian two-user channel with powers P1 and P2.

Let the sum of these powers be P:

A
P E PI + P2 " (1)

Then we can say that the capacity region of the corresponding broadcast channelI

whose P3 and PI in (10) should be varied under P +P =P(=P1+P2) must be an outer

Pip'P=lp)ms ea ue
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boud to our two-user problem since the broadcast chInnel problem is more general

than ours and includes our problem as a special case when PI andP2'P2  The

curve (10) under PI+P'=P of course passes through A (C0
C  ) for P=P and

21 1 11
2 This curve also passes through the point (C0,0) where C0 is given by

(8). A straight line R1+R2-C0 that often comprises the boundary of the outer

bound J also passes through the same point. It can then be easily shown that

the curve (10) is convex:

d2 R22

and the derivative is negative and its absolute value is not greater than 1:

dR2  XP + 1

D(X) = = XP + 2  1 , (12)
M2

where A=P1/P. From the above arguments we can conclude that this curve is

below the straight line RI+K2_C0 in the first quadrant and its behavior is

0 0sketched in Fig. 3. Because the rectangle surrounded by R1=Cis R2 -C2,

Rl-axis and R2-axis was also shown to be an outer bound in the previous

paper, a part of the rectangle on the left-lower side of the above curve has

been shown to be a new tighter outer bound. Lets call this new outer bound

J'. We sometimes also call the part of the boundary curve (10) within the

rectangle as J'.

One important conclusion obtained from the above result is that the point

1 is an optimal achievable point on the line R-C O because the point A1 is

I
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In Fig. 4 and 5 we show the achievable regions TS and FM1 and old and

new outer bounds J and J'. The abscissa and the ordinate are the rates per one

degree of freedom, that is, x=R1/2W, y= 2/2W; and SimS 2=5 in Fig. 4 and S-i,

S2 -0.2 in Fig. 5, where parameters S1 and S2 are defined by

1 2

and another parameter K is defined by

K - NI/N 2  (<1) . (14)

FM depends only on S1 and S2 and not on K as seen in (7), and the point A3 where

J' crosses the upper side of the rectangle also does not depend on K. The

x coordinate x3 of the point A3 is easily shown to be

- l.og ( +1 ) (15)
-' x3  -T o

2

In Fig. 4, TS and FEt1 intersect each other only for K-.8 and for K-.05 the

straight line R+R 2-Co is not shown since it is outside the rectangle. In Fig. 5,

TS and F[t4l intersect each other for both K-0.8 and 0.2 and for K=0.2 the line

R, +R-C 0 is not shown since it is also outside the rectangle. In these figures,

we can see that the new outer bound J' improves the old J fairly well and an

inner bound TS or FEM already approaches fairly close to the outer bound J'.
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IV. COMPARISON OF TWO ACHIEVABLE REGIONS TS AND FEM

In the previous paper, we showed that the two superposition modes and there-

fore the region TS obtained by time sharing these two points are achievable.

We also introduced a T)1 (6) that is equivalent to FDMl (7) as an achievable

region, but we did not ccmpare these two regions with one another. We cannot

establish a general inclusion relation between these two regions but sometimes

they intersect each other and sometimes the region TS includes FDMl. Since

knowledge of the behavior of these two regions will be very important to

understand the behavior of the further improved regions which will be discussed

in succeeding sections, we shall discuss it in some detail here.

Fig. 6 is a graph showing when these two achievable regions intersect each

other and when they do not. In this graph the abscissa is S1VP1/WN1 measured

in decibels and the ordinate is S2=P2/WN2 also measured in decibels. Curves

on which the boundary of FIMl is just tangential to the TS straight line for

three values of K, .8, .2 and .05 is also shown. For values of S1 and S2

that lie on the upper-left side of this curve, the FMI curve does not cross

the TS straight line and therefore the region FEW is completely included

within the region TS, and for S and S2 on the other side of the above curve

FMi crosses with TS straight line at two points. As is seen in Fig. 6 these

curves are nearly straight lines that pass near the origin with derivatives a

little smaller than 1 and are shifted downward as K decreases.

Let us explain some typical behaviors of. these two achievable regions

for several S1, S2 values.

First we consider the case where TS includes FEMl for all values of K<l.

This case corresponds to the upper left region of Fig. 6 and the region is

denoted by F in the figure. The graph of Fig. 7(a) shows a typical behavior
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of TS and Fil in this case for S1=1 and S2 =10 that corresponds to the point

E3 in Fig. 6. Since S1<S2 holds in F, the rectangle in Fig. 7(a) is rather

tall, and the point A1 is located at a fairly high position, and A, moves

upwards and A2 moves leftwards as K decreases. The graph of Fig. 4 shows

a similar behavior for S1=$2=5 that corresponds to the point E1 in Fig. 6. In

this case, two curves cross each other at adjacent two points only for large

value of K, but they get separated and don't intersect each other for most

values of K.

Next let us consider the region denoted by G in Fig. 6 where S is very

* large and $2<I. In this region and when K is not small TS crosses with FlIl

only near the point A,. The typical behavior is shown in Fig. 7(b) for S1=100

and S2 =1 that corresponds to the point E4 in Fig. 6.

An example where two curves intersect each other to a remarkable extent

is shown in Fig. 5 for S1= and S2= .2 that corresponds to the point E2 in Fig. 6.

The region of rate pair where two curves cross each other moves from right

to left as K decreases, because A, always moves upwards and A2 always moves

leftwards for decreasing K.

V. FREQUENCY DIVISION MULTIPLEXING

USING TWO SUPERPOSITION MODES (FIM2)

*l In subsequent sections, we consider improving the achievable region over

either one or both of two regions TS and Fal which have been studied in the

foregoing sections. We shall try to improve the achievable region by dividing

I9
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the frequency band into two bands and utilizing superposition modes described

in Section II in each sub-band. We consider in this section the case called

FUM2 where two different superposition modes are used in two sub-bands and in

the next section the case called FLv3 and Fl?4 where the same modes are used

in each sub-bands.

In FD2, we divide the given frequency band W into two sub-bands of width

YW and -W, where 0< y< I and j;l-y as before. Signal x1 (t) is also divided

into two parts each within the respective frequency sub-bands and each with

powers cP1 and UP,, where 0< < <1 and i=l-c. Signal x2 (t) is similarly divided

into two parts with powers OP2 and aP2.where 0< 8< 1 and =l-8. The first

band is operated by mode 1 and the second by mode 2 explained in Section II.

We have therefore the following expression of achievable rates in FDM2:

P1 - P1__

R = yWlog (1 + + Wlog (I+
1 yW1 Y$log + YW'2

(16)
OP2 T P2

R2  yWlog (1 + WN 2) YWlog (1+ Y

Before discussing the properties of this FDM2, we note that the same can be

done by time division multiplexing called TIN2. For that purpose, let's

consider a sufficiently long period of time T and divide this into two parts

AT and !T in the similar way as we considered TI)41 in Section II. Let us

utilize mode 1 during the first period of time using x1 (t) and x2(t) with powers

(a/X)Pl and (0/A)P2 respeclively, and utilize mode 2 during the remaining period

of time using x1(t) and x2(t) with powers (i/Y)P 1 and ( T/Y)P2. We can

easily show that the powers averaged over all the periods of time take the

required values P1 and P2 by the allocations of powers into two time intervals.

We then have the folloiwng expression in T112 that is exactly equivalent to FI12:
I,
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][ = WlogCx CL/A)Pm1 ! /)P 1
R XWlog(1+ + _'og(l+ ./.)p2+WN2

(17)
(8/,X)p 2  C(T/T)P 2R2  X Wlog (I1+3 + Wlog (I+ -- W2-- )

Now we explain three properties of the region F1142 obtained by varying

the three parameters at, 8, y each between 0 and 1.

Property VA: The region TS is included in FLM2. This can be easily

* shown by letting both a and 8 equal to y in (16). Then we just obtain the

* expression (5) for TS.

Property VB: The region FDMI is included in FDM2. This is also seen

easily by letting a=l and 8-0 in (16). Then we obtain the expression (7)

for F11.

The next property concerns the behavior of FI!12 when N1 =N2 =N. It should

become equal to the capacity region since TS does as explained in Section Ii.

" Property VC: For N-1 =N2 N, the region FM2 is equal to the known capacity

region This can be shown by adding R1 and R in (16) after letting NIN 2 =N,

and then by letting the parameters satisfy (a-y)P1 +(8-y)P2 or more specially

%-O-y. Then we can realize the entire portion of the straight line

R1+R2-Co-W log [1+(P 1 +P2 )/WN] within the rectangular region by varying cr8=y

from 0 to 1.

We show a sketch of many achievable regions in Fig. 8. F1142 is seen to

* include both TS and FDM1 due to the properties VA and VB described above.

0
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VI. FREQJENCY DIVISION nULTIPLEXING

USING A SINGLE SUPERPOSITION MODE (F113)

In the same way as in FIM2, suppose we divide the given frequency band

into two sub-bands of bandwidth yW and ?W, let the parts of power of signal

x 1 (t) in each sub-band be aP 1 and &P1 and also let the parts of power of

signal x2 (t) in each sub-bands be 8P2 and-TP2 " While the two sub-bands were

operated by different superposition modes in FDM2, we consider the case where

both bands are operated by the same superposition mode. First let us utilize

mode 1 for both sub-bands and call this FDM3. We have the following expression

for achievable rates in FDM3:

R -y yWlog (I4-+ L + YW log(l + 3,
yWN -ol

(18)

= yWlog(l+ Op 2  + TWl +P2

It should be noticed here that we can of course consider the multiband

system where the manber of sub-bands is larger than two and each sub-band is

operated by the same superposition mode. We shall, however, restrict ourselves

to the two sub-bands system in this paper mainly because of the ease of analysis

and numerical computation. However, many of the properties of FEv3 considered

here might be valid in the multiband system.

Next we notice that we can again show the equivalence of the time division

multiplexing to the frequency division multiplexing for this case. Since the

proof is quite similar to that in the previous section we will not repeat it

here.
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We now discuss several properties of the region FILM3 obtained by varying

the three parameters a, 8, y each between 0 and 1.

Property VIA: The region FI)M1 is included in FLtM3. This can be easily

shown by putting a=l, 8=0 or a=0, 8=1 in (18).

Property VIB: A rate pair (C1 ,C2 ) corresponding to a point A1 is realized
l0

iff cB=y. C,0 the maximnh of R2 , is realized iff ya=86=0 or y=ct=8=0, and

then R,=O. The proofs are not difficult and will not be shown here.

Property VIC: For fixed y and a (then R1 is fixed) R2 takes its maximum

value for the following value of 8:

88 0  if 0 < a

-1 if 80>1

0 if a0 < 0

where

00 - {(P1+P2)y P1ctl/P 2

The proof is straightforward and omitted. This property is very useful for

numerical calculations of FIM3 because the number of parameters that should

be varied can be decreased from 3 to 2.

Property VID: When N1 =N2 =N, a portion =.. of the boundary line segment

of the capacity region is realized by FrM3, where coordinates of the point

A4 are given by
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A4  (P1C0 ,(P 1 P2 ), P2Co/ (P1 +P2))

It is noted that FLI is tangential to 72 at A3 for N =N2=N. In order to

prove the above property, we first add R, and R2

c1 2 Z'P1 + 'P2
R, + R2 PWlog(l+ - +¥Wlog(j+ )

Then by differentiating it by a and 8 we see RI+R2 can take its maximum value

CO - Wlog(l+-+P-)

for a and 8 satisfying

(a-Y)P 1 + (8-y)P 2 = 0

In Fig. 8 we also show a sketch of the boundary curve FDM3. By the

property VIA, it should be outside of FDtl curve.

Next let us consider the case where both of the two sub-bands are operated

by superposition mode 2 and call this FEM4. Then we have the following expression

for achievalbe rates

01 PI P
R1 yWlog(1 + -W22) + TWlog(1 + )

OP 2 + g P2 (19)
R2- y8Pog( 2 Y Mt) + w-q

where parameters a, 8, y have the same meaning as FEM3.
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While FDM3 starts from point A, because it utilizes superposition mode 1,

FEW starts from point A2 because it utilizes mode 2. But we can see that FM4

is included within the region TS and therefore useless in the improvement

of the achievable region. In order to show this, we first add R1 and R of

(19) and obtain

+ R2  - yWlog(I+ a P2  
+ vWlog(l+ a ) .

-TWN2 wN

This equation is quite similar to that used to prove property VID, and therefore,

by differentiating it by a and 8, we can show that R,+R 2 takes its maximum

value

p +p
C = Wog(l +P+ 2 )

WN
2

when a and 8 satisfy the relation

(a-y)P1 + (a-y)P2  0

Therefore the rate pair within FEf4 satisfies the inequality

while the points on the TS line satisfies

R + R2 2>CO'

because the TS line passes through point A2 for which RI+R2 -C; holds and the

absolute value of the derivative of the TS line is smaller than 1. A typical behavior
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of F144 region is also sketched in Fig. 8. Although we will not mention F-?44 fur-

ther since it does not improve the achievable region, we note here one property

of FE4 for N1=N2=N. We stated in Property VID that when NI=N2 =N a portion

A.1A3 of the boundary line A 2 of the capacity region is realized by FDN3.

We can show in a similar way that the remaining portion A2A3 of A1A2 is realized

by F1144 for NI-N 2 =N. Thus for N1=N2=N we can attain the capacity region by

utilizing both FDM3 and FI144.

VII. RESJLTS OF CALCULATIONS ON

FD12 AND P14 AND DISCUSSION

A sketch of Fil42 and FIDt3 is shown in Fig. 8. Now we show in Fig. 9 and

10 the results of calculations of FI1M2 and FDM3 for S=S2=5 and for S1=1

and S2 -. 2 respectively. These two cases correspond to the points El and E2

in Fig. 6 and already many bounds were depicted for K-.8, .2 and .05 in

Fig. 4 for the first case and for K-.8 and .2 in Fig. S for the second case.

The results in Fig. 9 and 10 might have some errors in numerical calculations

especially for FD12 because we must change three parameters for it. The results

however are enough to see the general trend of their behavior.

Improvements are so small in the first case that the results are shown

in Fig. 9(a), (b) and (c) for K-.8, .2 and .05 respectively by expanding the

scale of the ordinate. In these figures ordinate Ay represents the improvement

of y-R2/ZW over TS line. A part of the new outer bound 3' is also shown and

FEW is shown in Fig. 9(a) where FEW1 gets out of TS only in a small range
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near x=.8. We can see from these figures that FDM2 is best near A2 and FDM3

is best near A, although both are equally good near A in (c) when K=.05.

In Fig. 10(a), (b) F1M2 and P113 are shown with sane other bounds for

K-.8 and .2 respectively. In these two figures it can be seen that there

is sane range between A1 and A2 where FDMl is just as good as FDM2 and FEf3,

and FEM2 is best to the left of it until A2 and both FI2 and Ftt4 seem to be

q best to the right of it until AI . In reality F113 is a little better than Ff1M2,

but the difference is so small that we cannot see it in the figures in this

case. We can see further that the boundary curves of FEt2 and FfM3 to the left

and to the right of the middle range respectively is fairly close to the

straight lines drawn from points A2 and A1 respectively so that the lines

should be tangential to the FI14 curve.

When we look through the results of calculations for many cases including

the above two cases shown in Fig. 9 and 10, we can say that the boundaries of

both regions FDM2 and P113 have a tendency to move being pulled by that of

Ff141 when values of the parameters change. That is, these two regions which

we are studying get far out of TS line if FI14 does the same. On the contrary

the two regions improve TS very little when FEW4 does not cross the TS line

or gets a little out of TS line. This is partly explained by the fact that

the region FI41 is always included within both F112 and P113 as shown in the

preceding sections.

From the above property of F42 and FPM3, it becomes appropriate to

discuss their behavior by using the relation between TS and F1I stated in

Section IV. There we stated that in region F of Fig. 6 where S1<S2 holds TS

includes P11 and in the region G where S1 is very large and S2<1, FD11

crosses TS very near to point A1 when K is not so small. Let us denote by H

other cases where TS and P11 cross each other in a remarkable way, and state
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the behavior of FE12 and Ff13 for the above three cases.

In the region F, improvement over TS is fairly small as in cases shown

in Fig. 9 and FfN2 is better than FDM3 for all or for a very wide range of

x. Sometimes FDN3 is best in the range very near to Al.

In the region G for not so small K, the situation is very much similar

to the above case, but FM3 is always best in the small range near A1 .

For the other case H where two regions intersect each other in a remarkable

way, there is almost always some middle range of x where FfI41 is as good as

FEM2 and FfN3, and Ff12 is best to the left of it until A2 and FDM3 is best to the

right of it until A,. Further, the following property seems to hold in general

for the case H: The boundary curve of FDM2 on the left side of the middle range

is close to the straight line drawn from A2 so tJhat this line should be tangential

to the FM1 curve, and the boundary curve of Ff3 on the right side of the middle

range is sometimes also close to the straight line drawn from A1 tangential to FD1

as in the example shown in Fig. 10 and is sometimes fairly better than that.

By the properties of these achievable regions FEt42 and FIM3, we see that the

following region should be a useful first approximation to the best achievable

region known so far: For F and G (K should be not so small for G), take

TS itself as a good approximation, and for H draw tangential straight lines

from A1 and A2 to FIM1. The obtained region is a good first approximation.

So far in this paper, we have considered two achievable regions FfN2

and FM15 to improve the regions TS and Ff141 introduced in the previous paper.

It might be possible to further improve the achievable region by combining

FI142 and P1)3 or by adopting multiband frequency division where the number

of sub-bands is larger than two. It is surmised by the author however that

we have already achieved fairly well near A1 because the point A1

itself is optimum on the line RMcO, but that sane improvement might be
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expected near A2 by some unknown new methods.

VIII. CONCLUSION

We have studied the Gaussian two-user channel. It is a channel with

two continuous inputs with allotted powers and with two continuous outputs

* where information should be transmitted between two input/output pairs simul-

taneously and where the two input signals are simply added and each output

signal is a superposition of this summed signal with a different white Gaussian

*noise. In this paper the concept of two superposition modes introduced in

the previous paper is first reviewed.

The achievable region TS, obtained by simply time-sharing these two

superposition modes, and the one FIM1, obtained by transmitting only one and

different input signal in each two divided frequency sub-bands are also reviewed

and compared with each other.

* A new, tighter outer bound than the one introduced in the previous paper

for general two-user channels is obtained for this Gaussian two-user channel

utilizing the known exact capacity region of the corresponding Gaussian broad-

* cast channel.

Two kinds of frequency division multiplexing FDt2 and FDM are introduced

and their properties are studied. In either case the given frequency band is

* divided into two sub-bands and these two sub-bands are operated by superposition

mode 1 and 2 respectively in Ftt2 and both sub-bands are operated by the

superposition mode 1 in FEM3. The achievability of these two methods for
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different parameter values is discussed.

It is pointed out that the achievable region, that is finally obtained

in this way, is fairly well approximated by using the regions TS and FEI1.

I
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